bond lengths and angles were computed by the function and crror program (ORFFE) of Busing, Martin \& Levy (1964).

Table 3. Bond distances, polyhedral edge lengths, and bond angles for the phosphate tetrahedron
Numbers in parentheses are estimated standard deviations in the last significant figure.

$\mathrm{P}-\mathrm{O}(1)$	$1.529(4) \AA$	$\mathrm{O}(1)-\mathrm{O}(2)$	$2.528(6) \AA$
$\mathrm{P}-\mathrm{O}(2)$	$1.537(4)$	$\mathrm{O}(1)-\mathrm{O}(3)$	$2.511(5)$
$\mathrm{P}-\mathrm{O}(3)$	$1.533(4)$	$\mathrm{O}(1)-\mathrm{O}(4)$	$2.475(5)$
$\mathrm{P}-\mathrm{O}(4)$	$1.548(4)$	$\mathrm{O}(2)-\mathrm{O}(3)$	$2.503(5)$
		$\mathrm{O}(2)-\mathrm{O}(4)$	$2.526(5)$
		$\mathrm{O}(3)-\mathrm{O}(4)$	$2.511(5)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$111.1(2)^{\circ}$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	$109.3(2)^{\circ}$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	$110.2(2)$	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$	$110.0(2)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$	$107.1(2)$	$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	$109.2(2)$

As we predicted (Rea \& Kostiner, 1972), $\mathrm{Cd}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{F}$ is isostructural with $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{F}$; the fluorine atom occupies a single position as opposed to the situation in both wagnerite $\left[\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{F}\right]$ and tripoidite $\left[\mathrm{Mn}_{1.5} \mathrm{Fe}_{0.5}\left(\mathrm{PO}_{4}\right) \mathrm{OH}\right]$, in which the fluorine atom (or hydroxyl ion) half-occupies two sites in a doubled unit cell. Furthermore, it is undoubtedly the larger cadmium ion that causes a reduction in the unusually long

Table 4. Bond distances and angles for the fluorine environment

Numbers in parentheses are estimated standard deviations in the last significant figure.

$\mathrm{F}-\mathrm{Cd}(1)$	$2 \cdot 468(3) \AA$	$\mathrm{Cd}(1)-\mathrm{F}-\mathrm{Cd}\left(1^{\prime}\right)$	$109 \cdot 0(1)^{\circ}$
$\mathrm{F}-\mathrm{Cd}\left(1^{\prime}\right)$	$2 \cdot 270(3)$	$\mathrm{Cd}(1)-\mathrm{F}-\mathrm{Cd}(2)$	$95 \cdot 4(1)$
$\mathrm{F}-\mathrm{Cd}(2)$	$2 \cdot 281(3)$	$\mathrm{Cd}(1)-\mathrm{F}-\mathrm{Cd}\left(2^{\prime}\right)$	$109 \cdot 9(1)$
$\mathrm{F}-\mathrm{Cd}\left(2^{\prime}\right)$	$2 \cdot 414(4)$	$\mathrm{Cd}\left(1^{\prime}\right)-\mathrm{F}-\mathrm{Cd}(2)$	$139 \cdot 1(1)$
		$\mathrm{Cd}\left(1^{\prime}\right)-\mathrm{F}-\mathrm{Cd}\left(2^{\prime}\right)$	$95 \cdot 5(1)$
		$\mathrm{Cd}(2)-\mathrm{F}-\mathrm{Cd}\left(2^{\prime}\right)$	$106 \cdot 6(1)$

metal-fluorine distances for one of the two fluorines in each of the octahedra in $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{F}$. Table 4 presents the relevant bond angles and lengths about the fluorine atom.

The cadmium ion, with a six-coordinated ionic radius of $0.95 \AA$ (Shannon \& Prewitt, 1969), most probably represents the largest divalent metal cation which forms a fluorophosphate with the wagnerite structure type. Calcium ($r=1.00 \AA$) does not form a fluorophosphate with the $2: 1: 1$ stoichiometry, and the compound chlorospodiosite $\left[\mathrm{Ca}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}\right]$ adopts an entirely different structure (Greenblatt, Banks \& Post, 1967).

This work was supported by the University of Connecticut Research Foundation and by the National Science Foundation. Computations were carried out in the Computer Center of the University of Connecticut.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Engel, G. (1970). Z. anorg. allgem. Chem. 378, 49-61.
Greenblatt, M., Banks, E. \& Post, B. (1967). Acta Cryst. 23, 166-171.
International Tables for X-ray Crystallography (1967). Vol. II, p. 302. Birmingham: Kynoch Press.
Rea, J. R. \& Kostiner, E. (1972). Acta Cryst. B28, 25252529.

Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B 25, 925-946.
Zachariasen, W. H. (1968). Acta Cryst. A23, 558-564.

Acta Cryst. (1974). B30, 2903

Cyanomethyl 2-Picolyl Sulfone

By R.L.Harlow
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.
M.P.SAMmes
University of Zambia, Box 2379, Lusaka, Zambia
and S.H.Simonsen
Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

(Received 10 June 1974; accepted 13 August 1974)

Abstract

C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{CH}_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CN},\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right), M=\) 196.32, monoclinic, $P 2_{1} / c, a=10.609$ (1), $b=9.964$ (1), $c=9 \cdot 124$ (1) $\AA, \beta=106 \cdot 10(1)^{\circ}, V=926 \cdot 60 \AA^{3}, Z=4$, $D_{x}=1.406, D_{m}=1.403 \mathrm{~g} \mathrm{~cm}^{-3}$. Full-matrix least-squares

refinement of 1686 reflections $[I>3 \sigma(I)]$ collected with $\theta-2 \theta$ scans on a Syntex $P 2_{1}$ diffractometer yielded a conventional R of $0 \cdot 036$. Expected $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and/or $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions were not found.

Introduction. Produced by sublimation, the colorless crystal used in this study measured $0.28 \times 0.27 \times 0.45 \times$ 0.38 mm perpendicular to $(010),(100),(011),(01 \overline{1})$ respectively. The unit-cell parameters were refined with the $\mathrm{Cu} \mathrm{K} \alpha_{1}$ Bragg angles for 28 high-angle reflections $\left(136<2 \theta<150^{\circ}\right)$ measured on a G. E. XRD-5 diffractometer $\left(\mathrm{Cu} K \alpha_{1}=1.54050 \AA\right)$. Intensity data for 2134 independent reflections were collected on a Syntex $P 2_{1}$ diffractometer with Mo $K \alpha$ radiation monochromatized by a graphite crystal. The $\theta-2 \theta$ scan technique was employed with the scan rate, S, varying from 1.5 to $5.0^{\circ} \mathrm{min}^{-1}$. The reflections were scanned from $1 \cdot 1^{\circ}$ in 2θ below the $K \alpha_{1}$ peak to $1 \cdot 1^{\circ}$ above the $K \alpha_{2}$ peak accumulating P counts. Background measurements, B_{1} and B_{2}, were taken at both ends of the scan range, each for a time equal to one-half of the scan time. The intensities of four standard reflections were measured after every 96 reflections; the average intensity fluctuated by 2% and a correction as a function of exposure time was applied. Lorentz and polarization corrections were applied; no absorption corrections were made ($\mu=3 \cdot 12 \mathrm{~cm}^{-1}$, Mo $K \alpha$). Standard deviations in the intensities, $\sigma(I)$, and in the structure amplitudes, $\sigma\left(F_{o}\right)$, were derived from counting statistics: $\sigma(I)=S\left(P+B_{1}+B_{2}\right)^{1 / 2}$. The 1686 reflections for which $I>3 \sigma(I)$ were the only reflections used in the solution and refinement of the structure; weights for these reflections were assigned as $1 / \sigma^{2}\left(F_{o}\right)$.

The structure was solved by the heavy-atom method and all non-hydrogen atoms were located in subsequent Fourier syntheses. A difference Fourier was used to locate the hydrogen atoms. Full-matrix least-squares refinement ($N U C L S$: J. A. Ibers's modification of $O R F L S$) of all positional and thermal (anisotropic for non-hydrogen atoms; isotropic for hydrogen atoms) parameters converged at a conventional $R=\left(\sum| | F_{o} \mid-\right.$ $\left.\left|F_{c}\right|\left|/ \sum\right| F_{o} \mid\right)$ of 0.036 and a weighted $R_{w}=\left(\sum w\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right)^{1 / 2}$ of $0 \cdot 027$. When all 2134 reflections were included, the conventional R was found to be 0.049 . The largest shift of any parameter in the final cycle of refinement was $0 \cdot 14$. The largest peak in the final difference map had a magnitude of 0.16 e \AA^{-3} and
was located near atom $\mathrm{O}(2)$. Extinction did not prove to be a serious problem. For $\mathrm{S}, \mathrm{O}, \mathrm{N}$, and C , the atomic scattering factors of Cromer \& Waber (1965) were used; those of Stewart, Davidson \& Simpson (1965) were used for the hydrogen atoms. The final positional and thermal parameters are given in Tables 1 and 2.*

Table 2. Positional and thermal parameters for the hydrogen atoms

$\mathrm{H}(1)$	$-0.320(2)$	$0.102(3)$	$0.052(3)$	$6.4(8)$
$\mathrm{H}(2)$	$-0.476(3)$	$0.210(3)$	$0.154(3)$	$9.0(10)$
$\mathrm{H}(3)$	$-0.461(3)$	$0.440(3)$	$0.193(3)$	$7.4(9)$
$\mathrm{H}(4)$	$-0.299(2)$	$0.557(3)$	$0.114(3)$	$5.8(7)$
$\mathrm{H}(5)$	$-0.148(2)$	$0.125(2)$	$-0.081(2)$	$4.1(6)$
$\mathrm{H}(6)$	$-0.113(2)$	$0.256(2)$	$-0.121(2)$	$3.4(5)$
$\mathrm{H}(7)$	$0.047(2)$	$0.409(2)$	$0.188(3)$	$5.5(7)$
$\mathrm{H}(8)$	$0.092(2)$	$0.395(2)$	$0.025(2)$	$4.7(6)$

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30626 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 1NZ, England.

Fig. 1. Atom numbering scheme with $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{N}$ interactions.

Table 1. Positional and thermal parameters $\left(\times 10^{4}\right)$ for the non-hydrogen atoms
Estimated standard deviations are in parentheses. Thermal parameters are in the form: $\exp \left[-\left(h^{2} \beta_{11}+\ldots+2 k l \beta_{23}\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
S	0.0327 (1)	$0 \cdot 1886$ (1)	0.0939 (1)	81 (1)	54 (1)	100 (1)	5 (1)	39 (1)	1 (1)
O(1)	$0 \cdot 1140$ (2)	$0 \cdot 1196$ (2)	0.0167 (2)	122 (2)	82 (2)	176 (3)	15 (2)	80 (2)	-11(2)
$\mathrm{O}(2)$	$0 \cdot 0197$ (1)	$0 \cdot 1331$ (1)	$0 \cdot 2344$ (2)	100 (2)	79 (2)	112 (2)	2 (1)	37 (2)	19 (2)
$\mathrm{N}(1)$	-0.2180 (2)	$0 \cdot 4053$ (2)	0.0472 (2)	88 (2)	81 (2)	153 (3)	-2 (2)	41 (2)	-0 (2)
$\mathrm{N}(2)$	$0 \cdot 3345$ (2)	0.3437 (3)	$0 \cdot 3002$ (3)	96 (3)	184 (4)	254 (5)	-5 (3)	40 (3)	1 (4)
C(1)	-0.2240 (2)	$0 \cdot 2726$ (2)	0.0317 (2)	76 (3)	82 (3)	88 (3)	4 (2)	13 (2)	-7 (2)
C(2)	-0.3162 (3)	0.1951 (3)	0.0745 (3)	103 (3)	112 (4)	162 (4)	24 (3)	34 (3)	-13 (4)
C(3)	-0.4056 (3)	$0 \cdot 2588$ (4)	$0 \cdot 1358$ (4)	86 (3)	197 (5)	191 (5)	20 (4)	52 (4)	-32 (4)
C(4)	-0.4000 (3)	0.3948 (4)	0.1519 (3)	85 (3)	182 (5)	181 (5)	-23 (3)	40 (3)	5 (4)
C(5)	-0.3055 (3)	$0 \cdot 4632$ (3)	$0 \cdot 1071$ (3)	95 (3)	114 (4)	192 (5)	-17 (3)	37 (3)	12 (4)
C(6)	-0.1245 (2)	$0 \cdot 2102$ (2)	-0.0363 (3)	110 (3)	80 (3)	89 (3)	4 (2)	30 (3)	5 (3)
C(7)	0.0966 (2)	$0 \cdot 3568$ (2)	$0 \cdot 1324$ (3)	87 (3)	61 (2)	138 (4)	-2 (2)	44 (3)	3 (3)
C(8)	$0 \cdot 2301$ (3)	$0 \cdot 3500$ (2)	$0 \cdot 2282$ (3)	85 (3)	87 (3)	163 (4)	-6 (2)	48 (3)	-4(3)

Discussion. This structure represents the second in a series to study $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions in compounds where the $\mathrm{C}-\mathrm{H}$ bond is polarized by adjacent electron-withdrawing groups. Such an interaction, with a short $\mathrm{H} \cdots \mathrm{O}$ distance of $2 \cdot 22 \AA$, was found for the first compound in the series, 2,4 -dinitrobenzyl p-tolyl sulfone, but the geometry of the molecule left doubt as to whether the interaction was a result of an $\mathrm{H} \cdots \mathrm{O}$ attraction or a result of packing forces (Harlow, Pfluger, Sammes \& Simonsen, 1974). It was hoped that the study of the present molecule, where the geometry does not 'force' the methylene hydrogen to approach either an oxygen or a nitrogen atom, would yield additional information on the nature of this interaction.

The results of this study can be seen in Fig. 1; all $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{N}$ distances less than $2 \cdot 6 \AA$, the classical if unrealistic van der Waals H...O distance, are given. For the methylene group of most interest, $-\mathrm{SO}_{2}-\mathrm{CH}_{2}-\mathrm{CN}$, the shortest $\mathrm{H} \cdots \mathrm{O}$ distance is $2.51 \AA$. The second methylene group, pyridine- $\mathrm{CH}_{2} \mathrm{SO}_{2^{-}}$, where the $\mathrm{C}-\mathrm{H}$ bond should be less polarized than the first, shows in fact a shorter H...O distance of $2 \cdot 45 \AA$. In short, no significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions occur in this structure, even if a correction is applied to lengthen the $\mathrm{C}-\mathrm{H}$ bonds to chemically reasonable distances and hence shorten the $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{N}$ distances.

The intramolecular bond distances and angles are given in Table 3. The sulfonyl S-O distances and the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angle are within 2σ of those found in the first compound of this series. The C-S distances are significantly different and may reflect the different inductive effects of the pyridine and cyano groups. The $\mathrm{C} \equiv \mathrm{N}$ bond length, $1 \cdot 122$ (4) \AA, is typically short because of the large thermal motion of this group and of the nitrogen atom in particular (Little, Pautler \& Coppens, 1971; Matthews, Swanson, Mueller \& Stucky, 1971). The $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ angle of $178.6(3)^{\circ}$ is normal.

The usual pattern of angles within the pyridine ring is also found here; the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle is less than 120°, $118.4(3)^{\circ}$; the neighboring $\mathrm{N}-\mathrm{C}-\mathrm{C}$ angles are greater than $120^{\circ}, 122.8(2)^{\circ}$ and $124.0(3)^{\circ}$; the remaining angles are generally somewhat less than 120° and such is the case here (Kim, Jeffrey \& Rosenstein, 1971; Campsteyn, Dupont \& Dideberg, 1974; Kvick \& Backéus, 1974). The $\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{N}(1)$ and $\mathrm{C}(6)-\mathrm{C}(1)-$ $\mathrm{C}(2)$ angles of $116.0(2)$ and $121 \cdot 2(2)^{\circ}$, respectively, are also reasonable. The bond distances within the ring agree quite well with those previously noted; the $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(4)-\mathrm{C}(5)$ are shortened as a result of the large thermal motions of these atoms. The pyridine ring is planar to within one standard deviation, 0.003 \AA; substituent atom $C(6)$ deviates from the plane by only -0.008 (2) \AA.

Table 3. Bond distances and angles for cyanomethyl 2-picolyl sulfone

Bond distances (\AA)			
$\mathrm{S}-\mathrm{O}(1)$	1.432 (2)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.446 (4)
$\mathrm{S}-\mathrm{O}(2)$	1.438 (2)	$\mathrm{C}(8)-\mathrm{N}(2)$	$1 \cdot 122$ (4)
S--C(6)	1.774 (3)		
S--C(7)	1.805 (2)	$\mathrm{C}(2)-\mathrm{H}(1)$	$0 \cdot 95$ (3)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.329 (3)	$\mathrm{C}(3)-\mathrm{H}(2)$	0.94 (3)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 385$ (4)	$\mathrm{C}(4)-\mathrm{H}(3)$	0.95 (3)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1 \cdot 500$ (3)	$\mathrm{C}(5)-\mathrm{H}(4)$	0.93 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 383$ (4)	$\mathrm{C}(6)-\mathrm{H}(5)$	0.95 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 363$ (5)	$\mathrm{C}(6)-\mathrm{H}(6)$	0.93 (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 365$ (4)	$\mathrm{C}(7)-\mathrm{H}(7)$	0.98 (2)
$\mathrm{C}(5)-\mathrm{N}(1)$	$1 \cdot 333$ (4)	$\mathrm{C}(7)-\mathrm{H}(8)$	1.04 (2)
Bond angles (${ }^{\circ}$)			
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$	118.3 (1)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(1)$	119 (2)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(6)$	108.2 (1)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(1)$	123 (2)
$\mathrm{O}(1)-\mathrm{S}-\mathrm{C}(7)$	$107 \cdot 3$ (1)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(2)$	120 (2)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(6)$	$109 \cdot 8$ (1)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(2)$	121 (3)
$\mathrm{O}(2)-\mathrm{S}-\mathrm{C}(7)$	$107 \cdot 9$ (1)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(3)$	120 (2)
$\mathrm{C}(6)-\mathrm{S}-\mathrm{C}(7)$	104.5 (1)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(3)$	122 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$122 \cdot 8$ (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(4)$	121 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.2 (2)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(4)$	115 (2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	1160 (2)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(5)$	115 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.4 (3)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	114 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.1 (3)	$\mathrm{S}-\mathrm{C}(6)-\mathrm{H}(5)$	105 (1)
C(3)-C(4)-C(5)	118.6 (3)	$\mathrm{S}-\mathrm{C}(6)-\mathrm{H}(6)$	107 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	124.0 (3)	$\mathrm{H}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	100 (2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	117.2 (2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	107 (1)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{S}$	114.4 (2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(8)$	112 (1)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}$	$109 \cdot 1$ (2)	$\mathrm{S}-\mathrm{C}(7)-\mathrm{H}(7)$	111 (1)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(2)$	$178 \cdot 6$ (3)	$\mathrm{S}--\mathrm{C}(7)-\mathrm{H}(8)$	104 (1)
		$\mathrm{H}(7)-\mathrm{C}(7)-\mathrm{H}(8)$	114 (2)

The authors would like to thank the Robert A. Welch Foundation for support of this work (Grant No. F-017); the Syntex $P 2_{1}$ diffractometer was purchased with funds provided by the National Science Foundation (Grant GP-37028).

References

Campsteyn, P. H., Dupont, L. \& Dideberg, O. (1974). Acta Cryst. B30, 90-94.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Harlow, R. L., Pfluger, C. E., Sammes, M. P. \& Simonsen, S. H. (1974). Acta Cryst. B30, 2264-2267.
Kim, H. S., Jeffrey, G. A. \& Rosenstein, R. D. (1971). Acta Cryst. B27, 307-314.
Kvick, Å. \& Backéus, M. (1974). Acta Cryst. B30, 474-480.
Little, R. G., Pautler, D. \& Coppens, P. (1971). Acta Cryst. B27, 1493-1499.
Matthews, D. A., Swanson, J., Mueller M. H. \& Stucky, G. D. (1971). J. Amer. Chem. Soc. 93, 5945-5953.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys., 42, 3175-3187.

